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Abstract—Natural signals are typically nonstationary. The
complex-valued frequency spectra of nonstationary signals do
not have zero spectral correlation, as is assumed for wide-sense
stationary processes. Instead, these spectra have non-zero second-
order noncircular statistics–that is, they are not rotationally
invariant–that are potentially useful for detection, classification,
and enhancement. These noncircular statistics are especially
significant for transient events, which are common in many
natural signals. In this paper we provide practical and effective
estimators for spectral noncircularity and spectral correlation.
We illustrate the behavior of our spectral noncircularity estima-
tors for synthetic signals. Then, we derive a generalized likelihood
ratio test using both circular and noncircular models and show
how estimates of spectral noncircularity provide performance
improvements for detection of natural acoustic events.

I. INTRODUCTION AND RELATED WORK

Physical signals that arise naturally, such as speech, en-
vironmental sounds, and machinery vibrations are obviously
real-valued. Yet Fourier transforms of these natural physical
signals are complex-valued. In this paper, we show that the
complex spectra of these signals can be beneficially character-
ized by considering whether their second-order statistics are
noncircular. That is, rotations of the complex quantities will
change their probability distributions [1]. We thus propose
that spectral noncircularity is a useful feature for detection,
enhancement, and classification of natural signals. This paper
details the case for detection, especially when the spectral
noncircularity of the natural signal of interest is substantial
compared to the circularity of the background noise.

We give explicit expressions and illustrations for the auto-
and cross-spectral correlation of several models of real-valued
natural signals, including wide-sense stationary (WSS) noise
and deterministic signals of any bandwidth. We also derive
practical estimators for spectral noncircularity and show how
these estimators are useful for acoustic event detection in
natural data.

Schreier and Scharf [2] were among the first to rec-
ognize that many real-valued nonstationary random signals
exhibit second-order noncircularity (or “impropriety”) in their
analytic signals. Furthermore, they also examined the bifre-
quency Loève spectrum of such signals. Atlas [3] consid-
ered bifrequency spectral correlations and their application to
separation and modification of speech from the perspective
of modulation frequency. Douglas and Mandic proposed us-
ing the “panorama” [4], which they defined as the Fourier
transform of a zero-mean signal’s autoconvolution estimated
using ensemble averaging. In concert with the conventional
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power spectrum–the Fourier transform of a zero-mean signal’s
autocorrelation–they proposed a detector for deterministic si-
nusoidal components in the presence of WSS noise. We go
beyond previous work by considering both the auto- and cross-
spectral statistics directly for a wider variety of deterministic
signals. Additionally, our estimators of spectral noncircularity
do not require ensemble averaging.

Millioz and Martin [5] studied the circularity of the short-
time Fourier transform (STFT) coefficients of nonstationary
signals in white Gaussian noise, and used noncircularity to
segment synthetic and natural signals in time-frequency. Clark
[6] observed that speech signals exhibit spectral noncircularity.
Spectral noncircularity is also closely related to the modulation
frequency content of signals, which can correspond to syllabic
rates of speech [7], [8]. Wisdom et al. [9] and Okopal et al.
[10], [11] empirically showed that spectral noncircularity is
useful for detection of speech signals and can be used for blind
separation of multichannel mixtures of speech and noise.

II. BACKGROUND

A. Noncircularity and correlation of complex-valued random
data

A zero-mean complex-valued random variable (RV) x re-
quires two second order moments [12]: Hermitian covariance,
defined as Rx

∆
= E{|x|2} = E{xx∗}, and complementary

covariance, defined as R̃x
∆
= E{x2} = E{xx}. The RV x is

called second-order circular if and only if R̃x = 0. The degree
of noncircularity1 of x is defined as

κx
∆
=
|R̃x|
Rx

, (1)

and takes on values between 0 and 1.

B. Spectral representation and correlations

The Cramér-Loève spectral representation of a random
process x(t) is [13]

x(t) =

∫ ∞
−∞

ej2πftdX(f), (2)

where dX(f) is a complex-valued spectral increment process.
Since dX(f) is complex valued, it requires two second-order
statistics. Thus, these increment processes have bifrequency
Hermitian spectral correlation (HSC) and complementary spec-
tral correlation (CSC) which are, respectively,

S(bf)
xx (f1, f2)df1df2

∆
= E[dX(f1)dX

∗(f2)], (3)

S̃(bf)
xx (f1, f2)df1df2

∆
= E[dX(f1)dX(f2)]. (4)

1Throughout the remainder of this paper, circular will refer to second-order
circularity.
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Fig. 1. Theoretical bifrequency Hermitian spectral correlation (HSC) and
power spectral density (PSD) for a real-valued wide-sense stationary (WSS)
random process. Left panel: bifrequency HSC; right panel: conventional PSD
Sx(f), equivalent to S

(bf)
xx (f, f).

III. THEORETICAL SPECTRAL IMPROPRIETY

This section presents the theoretical spectral noncircularity
and spectral correlations of several models of natural signals.

A. Wide-sense stationary random processes

A WSS random process has orthogonal increments [14],
which means that a WSS process exhibits no spectral correla-
tion between different frequencies. That is,

S(bf)
xx (f1, f2) =0, for f1 6= f2 (5)

Furthermore, a WSS process’s spectral increments are circular
[12], which means that the process has zero complementary
spectral correlation everywhere. That is,

S̃(bf)
x (f1, f2) =0, for all f1, f2. (6)

Thus, a WSS process is completely characterized by its power
spectral density (PSD) along the “stationary manifold,” f1 =
f2 [2]. The PSD is thus

Sx(f)
∆
= S(bf)

xx (f1 = f, f2 = f). (7)

Figure 1 illustrates these concepts. The theoretical bifrequency
HSC (left panel) and conventional PSD (right panel) are plotted
for an example WSS second-order autoregressive process.

B. Deterministic signal in WSS noise

Consider a deterministic signal p(t) in additive WSS noise:

x(t) = p(t− t0) + v(t), (8)

where t0 is a deterministic delay. In this case, the spectral
increments are

dX(f) = P (f)e−j2πft0df + dV (f), (9)

and the HSC and CSC along the stationary manifold are,
respectively,

Sx(f) = S(bf)
xx (f, f) =|P (f)|2 + Sv(f), (10)

S̃x(f) = S̃(bf)
xx (f, f) =P 2(f) exp(−j4πft0). (11)

Thus, along the stationary manifold, x(t) exhibits spectral
noncircularity at all frequencies where P (f) has non-zero
power, with degree of noncircularity

κx(f) =
|P (f)|2

|P (f)|2 + Sv(f)
=

SNR(f)

SNR(f) + 1
, (12)

where SNR(f)
∆
= |P (f)|2

Sv(f) is the frequency-dependent power
ratio between the deterministic signal and the random noise.

Off the stationary manifold where f1 6= f2, the HSC is
only nonzero at all combinations of frequencies where P (f1)
and P (f2) are nonzero. The HSC and CSC are

S(bf)
xx (f1, f2) =P (f1)P

∗(f2), (13)

S̃(bf)
xx (f1, f2) =P (f1)P (f2). (14)

C. Random signals

Certain random signals also exhibit spectral noncircularity
and cross-spectral correlation. For example, WSS noise that
is amplitude-modulated by a sum of sinusoids, which are
good models of rhythmic signals like ship noise, are spectrally
noncircular at multiples of the modulation frequencies [6],
[7], [15], [16]. Wisdom showed [17] that jittered pulse trains,
which can be used to model glottal excitations in voiced human
speech, exhibit spectral noncircularity at harmonic multiples of
the fundamental frequency.

IV. ESTIMATING SPECTRAL NONCIRCULARITY

In this section we propose methods to estimate spectral
correlations and spectral noncircularity in practice. Assume
that N samples, xn, of the random process are measured. In
this case, applying an analysis window h ∈ RN to x, com-
puting the discrete spectrum Xm using a N -length FFT, and
taking the magnitude-squared corresponds to a direct spectral
estimate Ŝ

(D)
x (fm) [14], which is equivalent to an estimate

of the Hermitian spectral correlation S(bf)
xx (fm, fm) along the

stationary manifold at the discrete Fourier frequencies fm.

Unfortunately, estimating the complementary spectral cor-
relation is not as simple as just squaring Xm (i.e., multiplying
Xm by itself), since this would produce an estimator that
is maximally noncircular at every frequency. An effective
estimator requires some amount of averaging over multiple
realizations.

Since only one realization is available, ensemble averaging
is impossible. Instead, multiple realizations can be acquired in
one of two ways. First, x can be segmented into L shorter
chunks and we can average in time over the spectra of the
chunks to compute the statistics2, which is akin to Welch’s
method [18]. Alternatively, by using L orthogonal multitapers
h`n such that 〈h`1n , h`2n 〉 = 0 for `1 6= `2, we can acquire L in-
dependent observations of the spectra: X`

m
∆
= FFT

{
h` � x

}
,

where m is discrete frequency index and ` is taper index.
A multitaper estimator (a method originally proposed by
Thomson [19]) averages across frequency, with the bandwidth
increasing as the number of tapers increases. The standard
choice for the multitapers are the discrete prolate spheroidal
sequences (DPSS), which maximize the spectral concentration
of the windows h` for a given bandwidth W [19].

Using either Welch’s or Thomson’s multitaper method, the

2As long as the deterministic phase caused by window hops is removed by
multiplying X`

m by ej2πf`Nhop .
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Fig. 2. Outputs of Welch and multitaper estimators of spectral Hermitian variance (top row), complementary variance (middle row), and degree of noncircularity
(bottom row) for two different synthetic test signals in 10dB SNR white noise: a sinusoid (left panel) and a Kronecker delta function (right panel). The ideal
ground truth is given in the right columns of the panels. Both estimators use the same bandwidth of 2/(64ms) = 31.25Hz.

estimators for HSC and CSC at frequencies fm1
, fm2

are

Ŝ(bf)
xx (fm1

, fm2
) =

1

L

L−1∑
`=0

c`X
`
m1

(X`
m2

)∗, (15)

ˆ̃S
(bf)

xx (fm1
, fm2

) =
1

L

L−1∑
`=0

c`X
`
m1
X`
m2

(16)

where c` = 1 for all ` when using Welch’s method and when
using the multitaper method, c` are weights corresponding to
the eigenvalues of the tapers. When m1 = m2 = m, by
the triangle inequality these estimators satisfy the property∣∣∣ ˆ̃S(bf)

xx (fm, fm)
∣∣∣ ≤ Ŝ

(bf)
xx (fm, fm) for all m. A version of the

multitaper CSC estimator along the stationary manifold was
originally proposed by Clark et al. [20].

Using (15) and (16), the spectral noncircularity estimator
is

κ̂x(fm) =

∣∣∣ ˆ̃S(bf)

xx (fm, fm)
∣∣∣

Ŝ
(bf)
xx (fm, fm)

. (17)

If the samples X`
m/
√
c` are assumed to be distributed as

i.i.d. complex-valued Gaussians, Delmas et al. [21, Remark
5] provide an approximate finite-sample distribution for the
estimator of the degree of noncircularity κ̂ in (17). According
to this approximation, the distribution of κ̂ converges as
L → ∞ to a Rayleigh distribution with scale L−1/2 when
κ = 0 and to a normal distribution with mean κ and variance
σ2
κ = L−1/2(1 − κ2)2 when κ > 0. In practice, this approxi-

mation seems to hold for L as low as 10 samples [6, Appendix
C]. Using this approximate finite-sample distribution, we can
define a threshold T for deciding whether a frequency bin is
noncircular for a given probability of false alarm PFA.

V. EXPERIMENTS

A. Synthetic data

Two simple test signals to verify these estimators are a
sinusoid at frequency f0 = 125 Hz of duration 1 second
and a Kronecker delta function. Both signals are embedded
in white noise at a SNR of 10dB. The sampling frequency
is 16kHz and frames of length 64ms are used for both the
Welch’s and multitaper estimators. Statistics are computed in
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Fig. 3. Hermitian and complementary variance estimates and estimated degree
of spectral noncircularity for a DCASE audio file.

8ms increments using L = 16 frames at a time. The Welch’s
estimator uses a Hamming window with a hop of 32ms, and
the multitaper estimator uses 16 DPSS tapers with duration
equal to the total duration of the Welch’s averaging region,
which is L · (hop) = 16(32ms) = 512ms. Figure 2 shows the
results. For reference, we give ground truth time-frequency
plots that are the output of an ideal estimator using our results
from §III.B. Aside from smoothing, both estimators appear to
work relatively well.

B. Detection of acoustic events

To demonstrate the usefulness of spectral noncircularity for
natural data, we consider the task of acoustic event detection
using the publicly-available Detection and Classification of
Acoustic Scenes and Events (DCASE) dataset [22]. In this
dataset, 16 different types of acoustic events characteristic of
a typical office environment–including beeps, throat clearing,
coughs, door slams, keyboard clicks, keys dropped on a table,
knocks, laughter, mouse clicks, page turns, pen drops, phones,
printers, speech, and switches–are embedded in stationary
background noise at SNRs of −6, 0, and 6 dB. Given a
recording y, our goal is to detect when one or more acoustic
events are active, in 8ms increments.



Figure 3 shows time-frequency plots for an example
DCASE audio file at 0dB SNR. The sampling frequency is
16kHz, the Welch’s method window is a 64ms Hamming
window with a hop of 32ms, and statistics are computed in
8ms increments using L = 16 STFT frames at a time. The total
duration of the Welch’s sliding window and of the multitaper
windows is thus L·(hop) = (16)(32ms) = 512ms. Notice that
the degree of spectral noncircularity is highest when acoustic
events occur, especially transient events.

We test four methods of detection on this data: a baseline
energy detector and three detectors based on a generalized like-
lihood ratio test (GLRT) using either a circular or noncircular
model of the unknown signal. In general, if θ1 are unknown
parameters under H1 and θ0 are unknown parameters under
H0, a GLRT is defined as the ratio of the likelihoods under
the two hypotheses, using the maximum-likelihood estimates
of the unknown parameters θ1 and θ0:

G(y)
∆
=

[
max
θ1

pH1(y|θ1)

]
/

[
max
θ0

pH0(y|θ0)

]
. (18)

Here, the detection problem tests between the two hypothe-
ses

H0 :Yt = Vt,

H1 :Yt = Xt + Vt.
(19)

Under the null hypothesis H0, a complex-valued STFT frame
Yt consists of only zero-mean circular Gaussian noise Vt
with known diagonal covariance Rv . Under the alternative
hypothesis H1, Yt is Vt plus some zero-mean Gaussian signal
Xt with unknown diagonal Hermitian covariance Rx. The
signal’s diagonal complementary covariance R̃x is known and
equal to 0 under the circular model, and is unknown under the
noncircular model. We use the probability density function for
L samples of a zero-mean noncircular Gaussian, which is

p(y;Ry, R̃y) =
exp

(−∑L−1
`=0 |y`|

2+Re

{
R̃y
Ry

∑L−1
`=0 y2`

}
Ry(1−κ2

y)

)
(
πRy

√
1− κ2

y

)L . (20)

The estimate of the noise spectrum Rv(f) is computed
from the first 4 seconds of data, which we know a priori to
only contain noise. Using the noise estimate R̂v(f), the log
detection statistic for the circular GLRT is proportional to

logGC(Yt) =
∑
f

(
R̂y(f, t)

R̂v(f)
− log

R̂y(f, t)

R̂v(f)

)
, (21)

where R̂y(f, t) ≥ R̂v(f) is the estimated Hermitian variance
of the observed data Yt, and constants have been absorbed into
the detection threshold. The first term in equation (21) defines
an energy detector, which will be used as a baseline. For the
noncircular GLRT, the log detection statistic is

logGNC(Yt) = logGC(Yt)−
1

2

∑
f

log
(
1− |κ̂y(f, t)|2

)
,

(22)
where κ̂y(f, t) is the ratio of the estimated complementary

variance magnitude | ˆ̃Ry(f, t)| to R̂y(f, t).

If the noise Hermitian variance Rv(f) is not known, under
a circular signal model no detector exists, since the problem
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Fig. 4. Receiver operating curves for DCASE acoustic event detection using
Welch’s estimator (left panel) and multitaper estimator (right panel). Note that
the Welch blind noncircular GLRT assuming unknown noise variance Rv (left
panel: thick dashed line) performs nearly as well as the non-blind detectors
that do use an estimate of the noise variance Rv (left panel: thin solid, dot-
dash, and thick solid lines).

has become ill-defined. However, if we continue to assume that
the WSS noise is circular and that the nonstationary signal is
noncircular at least some frequencies, we can design a blind
noncircular detector that does not require an estimate of the
Hermitian variance of the noise. Under these assumptions,
the maximum likelihood estimate of the Hermitian variance
under both H0 and H1 is R̂y(f, t). Because of this, in (22),
logGC(Yt) becomes 1, and the log GLRT is

logG
(blind)
NC (Yt) = −

∑
f

log
(
1− |κ̂y(f, t)|2

)
. (23)

Using Delmas et al.’s approximate finite-sample distribution
for κ [21], we can determine a threshold with a desired
probability of false alarm.

Receiver operating curves (ROCs) are shown in figure 4
for the four detectors using either the Welch or multitaper
estimators. Notice that the noncircular non-blind detector im-
proves over the circular non-blind detector for lower SNRs
(i.e., when the detection threshold is lower). Also, interestingly,
despite not using an estimate of the noise variance, the blind
noncircular detector using the Welch estimator comes close to
achieving the performance of the non-blind detectors. The area
under the ROC curve (AUC) for the energy detector, non-blind
circular, non-blind noncircular, and blind noncircular detectors
is 0.94, 0.95, 0.96, and 0.92, respectively, using the Welch
estimator, and 0.94, 0.95, 0.96, and 0.83, respectively, using
the multitaper estimator.

VI. CONCLUSION

We have given closed-form expressions for the Hermitian
and complementary correlation of the spectral increments of
models of nonstationary natural signals. We proposed practical
estimators for these statistics, and we demonstrated that spec-
tral noncircularity can improve detection of realistic acoustic
events. Furthermore, spectral noncircularity can be used to
design a blind detector of such events that does not require an
estimate of the stationary background noise power spectrum,
yet does not suffer much performance degradation compared
to non-blind detectors.

Future opportunities include exploitation of cross-
frequency spectral correlations and the spectral noncircularity
of multichannel data for natural signals.
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