
BUILDING RECURRENT NETWORKS BY UNFOLDING ITERATIVE THRESHOLDING
FOR SEQUENTIAL SPARSE RECOVERY

Scott Wisdom1, Thomas Powers1, James Pitton1,2, Les Atlas1

1Department of Electrical Engineering, University of Washington, Seattle, WA, USA
2Applied Physics Laboratory, University of Washington, Seattle, WA, USA

ABSTRACT

Historically, sparse methods and neural networks, particularly mod-
ern deep learning methods, have been relatively disparate areas.
Sparse methods are typically used for signal enhancement, compres-
sion, and recovery, usually in an unsupervised framework, while
neural networks commonly rely on a supervised training set. In this
paper, we use the specific problem of sequential sparse recovery,
which models a sequence of observations over time using a sequence
of sparse coefficients, to show how algorithms for sparse modeling
can be combined with supervised deep learning to improve sparse
recovery. Specifically, we show that the iterative soft-thresholding
algorithm (ISTA) for sequential sparse recovery corresponds to a
stacked recurrent neural network (RNN) under specific architecture
and parameter constraints. Then we demonstrate the benefit of train-
ing this RNN with backpropagation using supervised data for the
task of column-wise compressive sensing of images. This training
corresponds to adaptation of the original iterative thresholding al-
gorithm and its parameters. Thus, we show by example that sparse
modeling can provide a rich source of principled and structured deep
network architectures that can be trained to improve performance on
specific tasks.

Index Terms— Sparse recovery, sequential data, compressive
sensing, deep unfolding, recurrent neural networks

1. INTRODUCTION

Many signal processing applications require the recovery of
dynamically-varying signals from noisy and potentially compressed
observations. Sequential sparse recovery processes short intervals
of the observations at a time and models the dynamics of the sig-
nal using a sequence of sparse coefficients with respect to a static
dictionary. By exploiting the sparsity of these coefficients and corre-
lation between successive signal intervals, signals can be recovered
and denoised from noisy and compressed observations. At test
time, these unsupervised methods rely on solving an optimization
problem, usually with iterative algorithms.

Another class of models that process sequential data includes
supervised recurrent neural networks (RNNs), which have recently
become very popular and are effective when enough training data is
available. RNNs have achieved significantly improved performance
on a wide range of sequential tasks, e.g. [1, 2, 3, 4]. Instead of solv-
ing an optimization problem at test time, the deterministic computa-
tional architecture of the RNN is defined beforehand, and the RNN’s
parameters are optimized using backpropagation to minimize a cost
function on a training dataset.

This work is funded by ONR contract N00014-12-G-0078, delivery or-
der 0013.

For our main contribution in this paper, we show how the par-
ticular iterative soft-thresholding algorithm (ISTA) for sequential
sparse recovery can be viewed as a stacked RNN. The resulting
RNN’s parameters can be adapted using a supervised training set to
achieve superior performance over the original iterative algorithm.

Our procedure is a specific example of unfolding, originally de-
fined and proposed by Hershey et al. [5], which prescribes using the
iterations of an algorithm as layers of a deep network-like architec-
ture. Training the resulting network’s parameters with backpropaga-
tion adapts a more flexible version of the original iterative algorithm
on additional training data and implicitly performs automatic hyper-
parameter selection.

We begin with a survey of related work in section 2. Section 3 re-
views the sparse recovery problem and the iterative soft-thresholding
algorithm to solve it. In section 4, we describe the sequential exten-
sion of sparse recovery and describe an iterative soft-thresholding
algorithm to solve it. In section 5 we review RNNs. In section 6 we
describe the equivalence of our proposed sequential sparse recovery
algorithm to a RNN under certain architecture and parameter con-
straints. Section 7 presents an experiment on compressive sensing
of image data that compares our proposed trained sequential itera-
tive soft-thresholding RNN to both conventional sequential sparse
recovery algorithms and a generic deep architecture.

2. RELATION TO PRIOR WORK

Other algorithms besides iterative soft-thresholding have been pro-
posed for sequential sparse recovery [6, 7, 8, 9, 10]. This past work
has not made any connection to deep networks; however, these algo-
rithms could also be unfolded and trained in a similar manner as we
have done in this paper for sequential iterative soft-thresholding.

Several iterative algorithms for probabilistic model inference
have been unfolded, including nonnegative matrix factorization for
audio source separation [11], factorial Gaussian mixture models
for multimicrophone audio source separation [12], and supervised
topic modeling [13, 14]. Sparse recovery algorithms have also been
unfolded, but only for the nonsequential case. Gregor and LeCun
[15] proposed learned ISTA (LISTA), which uses learned encoders
and decoders to increase the speed and performance of the origi-
nal ISTA algorithm. Rolfe and LeCun [16] unfolded ISTA under
a nonnegativity constraint on the sparse coefficients. In this case,
the nonlinear units of the unfolded network are rectified linear units
(ReLUs) [17]. After adding a classification penalty term to the train-
ing cost function, Rolfe and LeCun dubbed the resulting network
a discriminative recurrent1 sparse autoencoder. These networks are
similar to the deep sparse rectifier networks of Glorot et al. [18],

1Where the recurrence is across iterations instead of across time steps.
We use “iterations” to refer to the vertical stacking dimension in our model.

Algorithm 1 Basic iterative soft-thresholding algorithm (ISTA)
Input: observations x, measurement matrix A, dictionary D, initial

coefficients h(0)

1: for k = 1 to K do
2: z ← (I− 1

α
DTATAD)h(k−1) + 1

α
DTATx

3: h(k) ← softλ/α (z)

4: return h(K)

except that the coding dictionaries are tied between layers. Kamilov
and Mansour [19] learned improved ISTA nonlinearities from data.
Palangi et al. [20] proposed convolutional deep stacking networks
to improve sparse recovery from multiple measurement vectors. We
go beyond these works by considering the sequential extension of
sparse recovery and its unfolding.

3. SPARSE RECOVERY

We first review the problem of nonsequential sparse recovery from
a single, static observation vector. The matrix D ∈ RN×N is a dic-
tionary whose columns correspond to basis vectors. We make noisy
observations of a signal s = Dh through a measurement matrix
A ∈ FM×N : x = As + ε, where M < N for a compressed sens-
ing problem. Sparse recovery solves an optimization problem to find
ĥ ∈ RN such that the reconstruction ADĥ is as close as possible to
x in terms of squared error, subject to a `1 penalty:

min.
h

1

2
‖x−ADh‖22 + λ‖h‖1. (1)

Problem (1) is known as basis pursuit denoising (BPDN) [21], which
is also equivalent to minimizing the Lagrangian of the least abso-
lute shrinkage and selection operator (LASSO) method for sparse
recovery [22]. The `1-norm regularization on h promotes sparse co-
efficients, which explain the signal s with only a few basis vectors,
which are columns of D.

The LASSO corresponds to a probabilistic model where the ob-
servations x consist of a deterministic component As = ADh plus
zero-mean Gaussian noise with covariance σ2I, and each element of
h has a zero-mean Laplacian prior with scale β:

x ∼N (ADh, σ2I),

hn ∼Laplace(0, β) for n = 1..N.
(2)

Minimizing the joint negative log-likelihood of x and h under this
model is equivalent to solving the problem (1) with λ = 2σ2/β.

Many algorithms have been proposed, e.g. [23, 24], for solving
the LASSO problem (1). Here we will focus on ISTA [25, 24], which
is a proximal gradient method that consists of K iterations of soft-
thresholding. The basic ISTA algorithm is described in algorithm 1,
where 1/α is a step size and softb(z) of a vector z denotes appli-
cation of the following soft-thresholding operation with real-valued
threshold b to each element zn of z:

softb(zn) =
zn
|zn|

max(|zn| − b, 0). (3)

4. SEQUENTIAL SPARSE RECOVERY

Now assume we want to model a sequence of observations xt, t =
1..T , where these sequential observations are not necessarily inde-
pendent. To model this dependence over time, we will assume that

Algorithm 2 Sequential iterative soft-thresholding algorithm
(SISTA)
Input: observation sequence x1:T , measurement matrix A dictio-

nary D, predictor F, initial coefficients ĥ0

1: for t = 1 to T do
2: h

(0)
t ← DTFDĥt−1 # Initial estimate for ht

3: for k = 1 to K do
4: z←

[
I− 1

α
DT (ATA+λ2I)D

]
h
(k−1)
t + 1

α
DTATxt

5: h
(k)
t ← softλ1/α

(
z+ λ2

α
DTFDĥt−1

)
6: ĥt ← h

(K)
t # Assign estimate for ht

return ĥ1:T

the sparse coefficient vector ht is correlated with the previous coef-
ficient vector ht−1 such that the signal st = Dht is linearly pre-
dictable from st−1: st = Fst−1 +vt, where vt is zero-mean Gaus-
sian noise representing the prediction error. The probabilistic model
for this formulation uses a different prior on ht that is conditioned
on ht−1:

xt ∼N (ADht, σ
2I),

p
(
ht |ht−1

)
∝ exp

{
−ν1‖ht‖1−

ν2
2
‖Dht−FDht−1‖22

}
.

(4)

This prior encourages ht to be sparse while enforcing correlation
between st = Dht and st−1 = Dht−1 through the matrix F. The
prior on ht in (4) is similar to the prior for elastic net regularization
in the nonsequential case, where h is penalized by both `1 and `2
norms [26]. For nonsequential elastic net, the prior can be shown to
be a Gaussian scale mixture [27].

Minimizing the joint negative log-likelihood of x1:T and h1:T

under the generative model (4) is equivalent to solving the optimiza-
tion problem

min.
h1:T

T∑
t=1

(1
2

∥∥xt −ADht
∥∥2
2
+ λ1

∥∥ht∥∥1
+
λ2

2
‖Dht − FDht−1‖22

)
,

(5)

with λ1 = 2σ2ν1 and λ2 = 2σ2ν2.
We dub the iterative algorithm for solving the optimization prob-

lem (5) sequential ISTA (SISTA), which is described in algorithm
2 and derived in the supplementary material [28]. Note that al-
gorithm 2 is a straightforward modification of algorithm 1, where
the modifications are an outer loop over time step t, the transform
I − 1

α
DT (ATA + λ2I)D instead of I − 1

α
DTATAD in line 4,

and the the extra additive term λ2
α
DTFDĥt−1 in line 5 before the

application of soft-thresholding.
The estimate of the previous state ĥt−1 in lines 5 and 6 is deter-

mined by the order of the iterative updates. We desire a low latency,
which means a signal estimate ŝt is computed as soon as the data
xt is provided. Given only data for t = 1, the known part of the
objective in (5) is a convex function of h1. Thus, the output h(K)

1

after K iterations is the best estimate of the global optimum given
data up to t = 1. The optimal estimate of the next hidden state h2

should then use ĥ1 = h
(K)
1 as part of the estimation of the next time

step t = 2. Applying this logic across time, the optimal choice for
minimum latency is ĥt−1 = h

(K)
t−1. Also, the best initialization h

(0)
t

for ht is the linear prediction DTFDĥt−1.

5. RECURRENT NEURAL NETWORKS

A recurrent neural network computes output sequences ŷ1:T from
input sequences of data x1:T using the following nonlinear model:

ht =σb (Wht−1 +Vxt) (6)
ŷt =Uht + c, (7)

where σb is a nonlinear function such as a sigmoid, tanh, or ReLU
function. The vector b denotes optional parameters of the nonlin-
earity, such as the ReLU threshold. The parameters of the RNN
are trained by minimizing a cost function using backpropagation
on a supervised dataset consisting of I pairs of input sequences
x1:Ti,1:I and targets y1:I . The targets y1:I may be sequences
of vectors, single vectors, or scalars. Trainable RNN parameters
{h0,b,W,V,U, c} consist of the initial hidden state h0, the op-
tional parameters of the nonlinearity b, the recurrence matrix W,
the input transform V, and the affine output transform with matrix
U and vector c.

RNNs are often stacked into multiple layers to create more ex-
pressive networks [29, 30, 31]. To stack RNNs, in layer k > 1 the
hidden state h

(k)
t is connected to the hidden state h

(k−1)
t in layer

k − 1 by a linear transformation S(k) that is added to the preactiva-
tion of the nonlinearity, as shown in equation (8). The output of the
network is taken from the hidden states h(K)

1:T in the last layer, layer
K, as in equation (9).

h
(k)
t =

σb

(
W(1)h

(1)
t−1 +Vxt

)
, k = 1,

σb

(
W(k)h

(k)
t−1 + S(k)h

(k−1)
t

)
, k = 2..K,

(8)

ŷt =Uh
(K)
t + c. (9)

The parameters of such a stacked RNN are

θRNN = {ĥ0,b
(1:K),W(1:K),V(1:K),S(1:K),U, c}. (10)

A diagram of a stacked RNN is shown in the left panel of figure 1.

6. UNFOLDING SEQUENTIAL SPARSE RECOVERY TO A
STACKED RNN

Now we state our main result. Notice that if the RNN nonlinearity
σb in (8) is set to the soft-thresholding operation (3) with bias bn =
(λ1/α) for n = 1..N , the forward RNN computation in (8) and (9)
corresponds to the SISTA algorithm described in algorithm 2 under
the following conditions, which are also illustrated in the right panel
of figure 1:

1. The input nodes x1:T are connected to every hidden node
h
(1:K)
1:T using the matrices V(1:K).

2. The previous state estimate ĥt−1 = h
(K)
t−1 is used instead of

ĥt−1 = h
(k)
t−1 in the standard RNN.

3. Using P = DTFD, parameters θRNN are constrained as:

V(k) =
1

α
DTAT , ∀k, (11)

S(k) = I− 1

α
DT (ATA+ λ2I)D, k > 1, (12)

W(1) =
α+ λ2

α
P− 1

α
DT (ATA+ λ2I)DP, (13)

W(k) =
λ2

α
P, k > 1, (14)

U =D, c = 0. (15)

Fig. 1. Comparison between generic stacked RNN architecture (left)
as described by equations (8) and (9) and unfolded SISTA-RNN
(right) as implemented in algorithm 2 under the conditions described
in section 6. Colored nodes are inputs and outputs and white nodes
are hidden states (i.e. estimates of sparse recovery coefficients). The
shaded boxes illustrate hidden state computations. Notice that the
only differences between a standard RNN on the left and unfolded
SISTA-RNN on the right is the connection of the input xt to ev-
ery vertical iteration layer and the different recurrent connections
between h

(K)
t−1 and h

(k)
t .

Under these conditions, the SISTA-RNN output ŷ1:T is equivalent
to the reconstructed signal ŝ1:T = Dĥ1:T from the original SISTA.
Training the layer-wise SISTA-RNN parameters θRNN corresponds
to optimizing decoupled functions of the original SISTA parameters,
which are now allowed to be iteration-dependent:

θSISTA = {ĥ0,A
(1:K),D(1:K),F(1:K), α(1:K), λ

(1:K)
1 , λ

(1:K)
2 }.

(16)
Thus, training learns generalized settings of the SISTA parameters
that improve performance of deterministic SISTA with respect to a
cost function on training data. Training solves the following opti-
mization problem:

min.
θ

I∑
i=1

f(ĥ1:T,i,y1:T,i)

subject to ĥ1:T,i = gθ(x1:T,i), i = 1, . . . , I,

(17)

where f is the training cost function and gθ is a deterministic
function parameterized by θ that solves the original optimization
problem. For the SISTA-RNN, we set f to the mean-squared error
(MSE) cost function between the SISTA-RNN outputs ŷ1:T,1:I =

Uĥ1:T,1:I+c and the training references y1:T,1:I = s1:T,1:I , define
gθ to be the computational structure of SISTA from algorithm 2 that
solves problem (5), and set the parameters θ to be θRNN from (10).

7. EXPERIMENT AND RESULTS

To demonstrate the advantage of training a SISTA-RNN, we use a
similar experimental setup as Asif and Romberg [10, §V.B]. In this
setup, the time-varying signals signal vectors st of dimension N =
128 are the columns of N × N grayscale images. Thus, the ‘time’
dimension is actually column index, and all sequences are length
T = 128. The images are taken from the Caltech-256 dataset [32],
which consists of 30607 color images of varying sizes. We convert
the images to grayscale, clip out centered square regions, and resize
to 128 × 128 using bicubic interpolation. We randomly designate
80% of the data, or 24485 images, for training. The remaining 20%
is split into validation and test sets of 3061 images each.

The columns of each image are observed through aM×N mea-
surement matrix A withM = 32 for a compression factor of 4, with
values chosen randomly with equal probability from2 ±1/(3

√
M).

The observations are these compressed measurements: xt = Ast.
Since we do not expect the columns of natural images to change very
much from column to column, the prediction matrix F is set to an
identity matrix. The dictionary D consists of Daubechies-8 orthog-
onal wavelets with four levels of decomposition.

We use unsupervised sparse algorithms as baselines that test rel-
evant assumptions and compare to prior work. These baselines are
implemented in Matlab. First, we use SISTA as described in algo-
rithm 2 with fixed step size α = 1, λ1 = 0.02, and λ2 = 0.002. The
regularization parameters are chosen using a random hyperparame-
ter search on training data, which sampled `1, `2 ∼ U(−3, 1) and set
λ1 = 10`

∗
1 and λ2 = 10`

∗
2 for the best parameters `∗1 and `∗2 in terms

of MSE. As another baseline we use SpaRSA3 [33] for each time
step, denoted as sequential SpaRSA (SSpaRSA). SpaRSA is equiv-
alent to ISTA with an adaptive step size adjustment and a gradual
decrease in λ1, which allows convergence in fewer iterations.

Since the SISTA-RNN has a fixed number of layers K (i.e., it-
erations), it is important to test the performance for a fixed K versus
a variable K. As such, for both SISTA and SSpaRSA, we either
use a fixed number of iterations K = 3 or run the algorithms to
convergence, where convergence is defined as the relative objective
function improvement being less than 10−4. Initialization is also
important. We test oracle and non-oracle versions of the baselines,
where the oracle version sets ĥ0 to the ground-truth coefficients from
the first column of the original image given by DT s0. Non-oracle
versions use ĥ0 = 0. As a state-of-the-art baseline, we also use the
`1-homotopy algorithm run to convergence as described and imple-
mented4 by Asif and Romberg [10] with oracle initial coefficients
and joint optimization of 3 time steps at once.

As a supervised baseline, we train a generic stacked RNN with
K = 3 as described by (8) and (9) with a soft-thresholding non-
linearity (3). Parameters of this generic RNN are initialized ran-
domly using the suggestion of [34]. For our proposed method, we
train a K = 3 layer unfolded SISTA-RNN. The parameters of the
SISTA-RNN are initialized either randomly [34] or using baseline
non-oracle SISTA with fixed K = 3 (first row of table 1) using the
relationships (11)-(15). Training of all supervised models are imple-
mented in Python using Theano [35]. The training cost function f
is MSE between the outputs ŷ1:T and the training references s1:T ,
which is optimized using backpropagation and stochastic gradient
descent with a minibatch size of 50, an initial learning rate of 10−4,
and RMSProp [36] with momentum 0.9 and averaging parameter
0.1 to adapt the learning rate. MSE on the validation set, which is
plotted in figure 2, is used to determine training convergence.

Results are shown in table 1 in terms of use of oracle initializa-
tion, number of iterations K, number of training examples I , MSE
and peak signal-to-noise ratio (PSNR) of the reconstructed signals
across the test set. Notice that compared to both the best-performing
unsupervised baseline, oracle `1-homotopy [10] and the generic su-
pervised RNN baseline, our proposed trained SISTA-RNN achieves
the best objective performance. The trained SISTA-RNN achieves
these results without oracle information and reduced computation

2These values are slightly different from Asif and Romberg [10], who use
±1/
√
M . We use smaller values of ±1/(3

√
M) here so that the norm of

the total measurement matrix AD is less than 1, which means that SISTA
will converge with a fixed step size of α = 1 [24].

3Available from https://www.lx.it.pt/˜mtf/SpaRSA/.
4Available from https://github.com/sasif/L1-homotopy.

Algorithm Oracle? # iter. K # tr. I MSE PSNR (dB)

B
as

el
in

es

SISTA No 3 None 4740 12.1
SISTA to convergence No ≤ 1825 None 3530 13.4
SSpaRSA to convergence No ≤ 420 None 3520 13.4
SISTA Yes 3 None 4160 13.3
SISTA to convergence Yes ≤ 694 None 2400 15.0
SSpaRSA to convergence Yes ≤ 225 None 2440 15.0
`1-homotopy [10] Yes ≤ 314 None 1490 17.1
Generic RNN, rand. init. No 3 24885 720 20.7

Pr
op

os
ed Trained SISTA-RNN, rand. init. No 3 24485 637 21.2

Trained SISTA-RNN, SISTA init. No 3 24485 541 22.2

Table 1. Results for sequential sparse recovery in terms of oracle
initialization, number of iterations K, number of training examples
I , mean-squared error (MSE), and peak signal-to-noise ratio (PSNR)
on the test set.

Fig. 2. Learning curves for supervised methods, showing that the
SISTA-RNN trains faster than the generic RNN.
Reference

Measurements

ℓ1-homotopy

PSNR=17.2dB

Generic RNN

PSNR=21.2dB

SISTA-RNN

PSNR=21.4dB
Reference

Measurements

ℓ1-homotopy

PSNR=13.9dB

Generic RNN

PSNR=18.0dB

SISTA-RNN

PSNR=18.6dB

Fig. 3. Reconstructed images from the test set.

using a smaller number of fixed iterations K = 3. Also, note
from figure 2 that the SISTA-RNN trains substantially faster than
a generic RNN. The SISTA-RNN architecture also performs well
even when initialized randomly, instead of with equivalent SISTA
parameters. In summary, by combining supervised training with net-
work architecture and parameter initializations provided by SISTA,
our proposed trained SISTA-RNN outperforms all baselines and ex-
hibits distinct advantages. Two examples of reconstructed images
are shown in figure 3. All code to replicate our results are available
in the supplementary material [28].

8. CONCLUSION

In this paper, we showed how the sequential iterative soft-thresholding
algorithm (SISTA) for sequential sparse recovery can be viewed as
a stacked recurrent neural network (RNN) with a soft-threholding
nonlinearity and a particular architecture. Training the resulting
SISTA-RNN with backpropagation corresponds to training a gener-
alization of the original SISTA algorithm that is a structured deep
network, which performs automatic tuning of model parameters.
The proposed supervised SISTA-RNN improves performance over
both oracle versions of the original SISTA algorithms and a generic
deep RNN for column-wise compressive recovery of images.

9. REFERENCES

[1] J. T. Connor, R. D. Martin, and L. E. Atlas, “Recurrent neu-
ral networks and robust time series prediction,” IEEE Trans-
actions on Neural Networks, vol. 5, no. 2, pp. 240–254, Mar.
1994.

[2] T. Mikolov, M. Karafiát, L. Burget, J. Cernockỳ, and S. Khu-
danpur, “Recurrent neural network based language model.,” in
Interspeech, 2010, vol. 2, p. 3.

[3] C. Weng, D. Yu, S. Watanabe, and B. H. F. Juang, “Recurrent
deep neural networks for robust speech recognition,” in Proc.
ICASSP, Florence, Italy, May 2014, pp. 5532–5536.

[4] A. Karpathy and L. Fei-Fei, “Deep visual-semantic alignments
for generating image descriptions,” in Proc. (CVPR), 2015, pp.
3128–3137.

[5] J. R. Hershey, J. L. Roux, and F. Weninger, “Deep Unfold-
ing: Model-Based Inspiration of Novel Deep Architectures,”
arXiv:1409.2574 [cs, stat], Sept. 2014.

[6] P. Garrigues and L. E. Ghaoui, “An Homotopy Algorithm for
the Lasso with Online Observations,” in Advances in Neural
Information Processing Systems, 2008, pp. 489–496.

[7] N. Vaswani, “Kalman filtered Compressed Sensing,” in Proc.
(ICIP), Oct. 2008, pp. 893–896.

[8] D. M. Malioutov, S. R. Sanghavi, and A. S. Willsky, “Sequen-
tial Compressed Sensing,” IEEE Journal of Selected Topics in
Signal Processing, vol. 4, no. 2, pp. 435–444, Apr. 2010.

[9] M. S. Asif, A. Charles, J. Romberg, and C. Rozell, “Estima-
tion and dynamic updating of time-varying signals with sparse
variations,” in Proc. ICASSP, Prague, Czech Republic, May
2011, pp. 3908–3911.

[10] M. S. Asif and J. Romberg, “Sparse Recovery of Streaming
Signals Using $\ell 1$-Homotopy,” IEEE Transactions on
Signal Processing, vol. 62, no. 16, pp. 4209–4223, Aug. 2014.

[11] J. Le Roux, J. R. Hershey, and F. J. Weninger, “Deep NMF for
Speech Enhancement,” in Proc. ICASSP, Brisbane, Australia,
2015.

[12] S. Wisdom, J. Hershey, J. L. Roux, and S. Watanabe, “Deep un-
folding for multichannel source separation,” in Proc. ICASSP,
Shanghai, China, Mar. 2016, pp. 121–125.

[13] J. Chen, J. He, Y. Shen, L. Xiao, X. He, J. Gao,
X. Song, and L. Deng, “End-to-end Learning of LDA by
Mirror-Descent Back Propagation over a Deep Architecture,”
arXiv:1508.03398 [cs], Aug. 2015.

[14] C. H. Lee and J. T. Chien, “Deep unfolding inference for super-
vised topic model,” in Proc. ICASSP, Shanghai, China, Mar.
2016, pp. 2279–2283.

[15] K. Gregor and Y. LeCun, “Learning fast approximations of
sparse coding,” in Proceedings of the 27th International Con-
ference on Machine Learning (ICML-10), 2010, pp. 399–406.

[16] J. T. Rolfe and Y. LeCun, “Discriminative recurrent sparse
auto-encoders,” arXiv:1301.3775, 2013.

[17] V. Nair and G. E. Hinton, “Rectified linear units improve re-
stricted boltzmann machines,” in Proc. ICML, 2010, pp. 807–
814.

[18] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier
neural networks,” in International Conference on Artificial In-
telligence and Statistics, 2011, pp. 315–323.

[19] U. S. Kamilov and H. Mansour, “Learning Optimal Nonlin-
earities for Iterative Thresholding Algorithms,” IEEE Signal
Processing Letters, vol. 23, no. 5, pp. 747–751, May 2016.

[20] H. Palangi, R. Ward, and L. Deng, “Exploiting correlations
among channels in distributed compressive sensing with con-
volutional deep stacking networks,” in Proc. ICASSP, Shang-
hai, China, Mar. 2016, pp. 2692–2696.

[21] S. Chen, D. Donoho, and M. Saunders, “Atomic Decomposi-
tion by Basis Pursuit,” SIAM Review, vol. 43, no. 1, pp. 129–
159, Jan. 2001.

[22] R. Tibshirani, “Regression shrinkage and selection via the
lasso,” Journal of the Royal Statistical Society. Series B
(Methodological), pp. 267–288, 1996.

[23] M. A. T. Figueiredo and R. D. Nowak, “An EM algorithm
for wavelet-based image restoration,” IEEE Transactions on
Image Processing, vol. 12, no. 8, pp. 906–916, Aug. 2003.

[24] I. Daubechies, M. Defrise, and C. De Mol, “An iterative thresh-
olding algorithm for linear inverse problems with a sparsity
constraint,” Communications on Pure and Applied Mathemat-
ics, vol. 57, no. 11, pp. 1413–1457, 2004.

[25] A. Chambolle, R. A. D. Vore, N.-Y. Lee, and B. J. Lucier,
“Nonlinear wavelet image processing: variational problems,
compression, and noise removal through wavelet shrinkage,”
IEEE Transactions on Image Processing, vol. 7, no. 3, pp. 319–
335, Mar. 1998.

[26] H. Zou and T. Hastie, “Regularization and variable selection
via the elastic net,” Journal of the Royal Statistical Society:
Series B (Statistical Methodology), vol. 67, no. 2, pp. 301–320,
2005.

[27] Q. Li and N. Lin, “The Bayesian elastic net,” Bayesian Analy-
sis, vol. 5, no. 1, pp. 151–170, Mar. 2010.

[28] “Building recurrent networks by unfolding iterative thresh-
olding for sequential sparse recovery supplementary ma-
terial,” Available at https://stwisdom.github.io/
sista-rnn.

[29] J. Schmidhuber, “Learning Complex, Extended Sequences Us-
ing the Principle of History Compression,” Neural Computa-
tion, vol. 4, no. 2, pp. 234–242, Mar. 1992.

[30] S. El Hihi and Y. Bengio, “Hierarchical Recurrent Neural Net-
works for Long-Term Dependencies.,” in NIPS. 1995, vol. 400,
p. 409, Citeseer.

[31] R. Pascanu, C. Gulcehre, K. Cho, and Y. Bengio, “How to Con-
struct Deep Recurrent Neural Networks,” arXiv:1312.6026
[cs, stat], Dec. 2013.

[32] G. Griffin, A. Holub, and P. Perona, “Caltech-256 object cate-
gory dataset,” 2007.

[33] S. J. Wright, R. D. Nowak, and M. A. Figueiredo, “Sparse re-
construction by separable approximation,” IEEE Transactions
on Signal Processing, vol. 57, no. 7, pp. 2479–2493, 2009.

[34] X. Glorot and Y. Bengio, “Understanding the difficulty of train-
ing deep feedforward neural networks.,” in Proc. AISTATS,
2010, vol. 9, pp. 249–256.

[35] Theano Development Team, “Theano: A Python framework
for fast computation of mathematical expressions,” arXiv:
1605.02688, May 2016.

[36] T. Tieleman and G. Hinton, “Lecture 6.5RMSProp: Divide the
gradient by a running average of its recent magnitude,” 2012,
Published: Coursera: Neural Networks for Machine Learning.

