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Abstract—Conventional statistical signal processing of nonsta-
tionary signals uses circular complex Gaussian distributions to
model the complex-valued short-time Fourier transform. In this
paper, we show how noncircular complex Gaussian distributions
can provide better statistical models of a variety of nonstationary
acoustic signals. The estimators required for this model are com-
putationally efficient, and also have a simple approximate finite-
sample distribution. We also show that noncircular Gaussian
models provide distinct benefits for statistical signal processing.
In particular, we show how noncircular Gaussian models can
improve detection of nonstationary acoustic events, and we
explore how estimator parameter choices affect performance.

I. INTRODUCTION

Many important natural physical signals in engineering are
nonstationary and real-valued, especially acoustic signals. Such
signals are often processed in the complex-valued frequency
domain using Gaussian models, which only require second-
order statistics. However, this conventional processing makes
a fundamental assumption that the phase of these complex
representations is uniform and thus uninformative. Such an
assumption implies that the probability density functions (pdfs)
of the observed random variables are circular, or invariant to
rotation in the complex plane.

In this paper, we relax this conventional circular as-
sumption, and demonstrate that using noncircular Gaussian
distributions that are not phase-invariant can provide distinct
benefits. In particular, we show using a rigorous hypothesis test
that the short-time Fourier transform (STFT) of nonstationary
signals exhibits significant noncircularity. Furthermore, we
show that using noncircular Gaussian distributions can improve
detection of nonstationary signals in the presence of stationary
noise. Noncircular models are very simple, requiring only an
additional second-order statistic, the complementary variance,
in addition to the usual Hermitian variance.

This paper is organized as follows. First, we review prior
work. Then we review the second-order statistics of noncircular
complex-valued random variables and provide a hypothesis test
for the connection between nonstationarity and noncircularity
in the frequency domain. Finally, as our main contribution, we
demonstrate the benefit of noncircular models on a realistic
nonstationary acoustic event detection dataset, and explore the
effect of estimator parameter choice on detection performance.
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G-0078, delivery order 0013, and U.S. Army Research Office grant number
W911NF-15-1-0450.

II. RELATION TO PRIOR WORK

Schreier and Scharf [1] were among the first to recognize
that many real-valued nonstationary random signals exhibit
second-order noncircularity (or “impropriety”) in their analytic
signals. Furthermore, they also examined the bifrequency
Loève spectrum of such signals. Atlas [2] considered bifre-
quency spectral correlations and their application to separation
and modification of speech from the perspective of modulation
frequency. Douglas and Mandic [3] proposed the “panorama,”
which they define as the Fourier transform of a zero-mean
signal’s autoconvolution estimated using ensemble averaging.
In concert with the conventional power spectrum–the Fourier
transform of a zero-mean signal’s autocorrelation–they pro-
posed a detector for deterministic sinusoidal components in
the presence of WSS noise. We go beyond previous work by
using estimators of spectral noncircularity that do not require
ensemble averaging.

Rivet et al. [4] observed spectral noncircularity in complex-
valued speech spectra and explored the effect of noncircularity
on the log magnitude spectra. Millioz and Martin [5] studied
the circularity of the short-time Fourier transform (STFT) co-
efficients of nonstationary signals in white Gaussian noise, and
used noncircularity to segment synthetic and natural signals in
time-frequency. Clark [6] observed that speech signals exhibit
spectral noncircularity. Spectral noncircularity is also related to
the modulation frequency content of signals [7], [8]. Wisdom
et al. [9] and Okopal et al. [10], [11] empirically showed that
spectral noncircularity is useful for detection of speech signals
and can be used for blind separation of multichannel mixtures
of speech and noise. This paper goes beyond our recent work
[12] on the connection between spectral noncircularity and
nonstationary signals by applying approximate finite-sample
distributions for noncircular statistics, performing acoustic
event detection on a new, larger dataset, and exploring the
effect of parameter choice on detection performance.

III. NONCIRCULAR GAUSSIAN RANDOM DATA

A complex-valued Gaussian random variable x requires not
one, but two second-order moments to fully characterize its
statistical behavior [13]. These two second-order moments are
the Hermitian variance

Rx := E{xx∗} = E{|x|2}, (1)

and the complementary variance

R̃x := E{xx} = E{x2}. (2)



If R̃x = 0, then x is said to be second-order circular1, or
proper.

The degree of noncircularity of x is described by the
circularity coefficient, defined as the ratio of the magnitude
of complementary variance to Hermitian variance:

k =

∣∣∣R̃x∣∣∣
Rx

. (3)

The circularity coefficient ranges from 0, which means x is
circular, to 1, which means x is maximally noncircular, or
rectilinear. A rectilinear complex random variable appears as
a line in the complex plane.

The pdf of M i.i.d. samples x0:M−1 of a noncircular
Gaussian random variable x is given by

p(x0:M−1;Rx, R̃x) =
exp

(−∑M−1

m=0
|xm|2+Re

{
R̃x
Rx

∑M−1

m=0
x2
m

}
Rx(1−k2x)

)
(
πRx

√
1− k2

x

)M .

(4)
Using this pdf, the maximum-likelihood estimators for Hermi-
tian and complementary variance are, respectively,

R̂x =
1

M

M−1∑
m=0

|xm|2,
ˆ̃
Rx =

1

M

M−1∑
m=0

x2
m, (5)

and the maximum-likelihood estimator for the circularity co-
efficient is

k̂x =

∣∣∣ ˆ̃Rx∣∣∣
R̂x

. (6)

IV. SPECTRAL NONCIRCULARITY OF NONSTATIONARY
SIGNALS

In this paper, we consider N samples yn, n = 0, .., N − 1
of a real-valued time-domain signal with sampling frequency
fs. The short-time Fourier transform (STFT) is often used to
analyze such signals, and is defined as

Yf,t =
N−1∑
`=0

w` yn+`+tNhop
e−jωf` (7)

with ω := 2πf/N for f ∈ {0..F} with F = N/2 + 1, where
w`, ` = 0, .., N − 1 is a short-time window, N is the window
length, and Nhop is the window hop.

To estimate noncircularity of the STFT, we use an estimator
similar to Welch’s method that averages adjacent STFT frames
within a frequency bin. That is, to estimate the noncircularity
of a STFT coefficient Yf,t of a real-valued time domain signal
yn, the M samples in the estimators (6) are Yf,t+m for
m = 0, ..,M − 1. However, these STFT coefficients cannot
be directly averaged together to estimate complementary vari-
ance, because the STFT hop Nhop causes deterministic phase
progressions e−jωNhop that destroy coherence of the complex-
valued samples. Thus, to properly estimate complementary
variance, the deterministic phase shifts must be compensated

1Since we will assume Gaussian random variables, which are completely
determined by their second-order moments, for brevity circular will refer to
second-order circular throughout the remainder of this paper.

for, which means the samples used in the complementary
variance estimator must be Yf,t+mejωmNhop . The estimators
of time- and frequency-dependent variance from the STFT are

R̂y(f, t) =
1

M

M−1∑
m=0

|Yf,t+m|2, (8)

ˆ̃
Ry(f, t) =

1

M

M−1∑
m=0

(Yf,t+me
jωmNhop)2. (9)

V. FINITE-SAMPLE APPROXIMATION OF CIRCULARITY
COEFFICIENT

To determine the suitability of a noncircular model for
complex-valued random data, we can perform a hypothesis
test:

H0 : kx = 0 (x is circular)
H1 : kx > 0 (x is noncircular)

(10)

Assuming we have M i.i.d. samples x0:M−1 of the random
variable x, Delmas et al. [14, Remark 5] provide a finite-
sample approximation for the sample circularity coefficient k̂x
under these two hypotheses, given by

H0 : k̂x ∼ R
(

1√
M

)
,

H1 : k̂x ∼ N
(
kx,

(1− k2
x)

2

√
M

)
.

(11)

Using the distribution under the null hypothesis, we can choose
a constant probability of false alarm (PFA) and compute a
threshold T that we can test k̂ against to determine statistically
significant noncircularity. These pdfs are illustrated in figure
1 for M = 10 samples, a constant PFA of 0.05, and true
circularity coefficient k equal to the threshold that achieves
PFA = 0.05, which yields a threshold of T = 0.77. In
practice, this finite-sample approximation has been empirically
observed to be accurate for M as low as 10 [6, Appendix C].
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Fig. 1. Illustration of pdfs for finite-sample approximation of circularity
coefficient estimator, for M = 10 samples, probability of false alarm (PFA)
of 0.05. For illustration purposes, we choose a true circularity coefficient k
equal to the theshold T , where T = 0.77 is chosen to achieve PFA = 0.05.

Next, we use the finite-sample approximation to demon-
strate that a particular nonstationary speech signal exhibits sub-
stantial, statistically significant noncircularity. The left panel of
figure 2 shows a spectrogram of a speech signal from a male
speaker, which is the log magnitude of the complex-valued
STFT. In the center panel, we plot the estimated circularity
coefficient versus time and frequency bin computed using the
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Fig. 2. Testing for noncircularity of a nonstationary speech signal. Left panel: spectrogram of speech signal. Center panel: estimated circularity coefficient
versus time and frequency bin. Right panel: thresholded estimated circularity coefficient with PFA = 0.05.
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Fig. 3. Receiver operating characteristic (ROC) curves for DCASE2016 event detection with N = 1024 and M = 64 for various SNRs. Same legend as figure
4.

0 0.2 0.4 0.6 0.8 1
0.75

0.8

0.85

0.9

0.95

1

ROC, all SNRs

Probabil ity of false alarm

P
r
o
b
a
b
il
it
y
o
f
d
e
t
e
c
t
io
n

Energy detector, R v known

Circular GLRT, R v known

Noncircular GLRT, R v known

Noncircular GLRT, R v unknown

Fig. 4. ROC curve for DCASE2016 event detection with N = 1024 and
M = 64 across all SNRs.

estimators (8) and (9). Using the finite-sample approximation
(11), we determine the threshold for the hypothesis test (10)
to be T = 0.77. In the right panel of figure 2, we apply this
threshold to the estimated circularity coefficient shown in the
center panel. Notice that the speech signal exhibits statistically
significant noncircularity, especially at onsets and offsets.

VI. DETECTION OF NONSTATIONARY ACOUSTIC EVENTS

To demonstrate the benefit of noncircularity for detection,
we use Task 2 of the Detection and Classification of Acous-
tic Events 2016 (DCASE2016) dataset [15], available from
http://www.cs.tut.fi/sgn/arg/dcase2016/. This dataset consists
of eleven different types of acoustic events embedded in
stationary background noise typical of an office environement.
These events include clearing throat, coughing, door knock,
door slam, drawer, human laughter, keyboard, keys put on

table, page turning, phone ringing, and speech. Our goal is
to detect when at least one acoustic event is active in 8
millisecond increments. Acoustic events are mixed with the
background noise at −6dB, 0dB, and 6dB signal to noise ratio
(SNR).

We will assume that the background noise vn is stationary,
which means its STFT coefficients Vf,t are circular with
frequency-dependent Hermitian variance Rv(f). We will also
assume that nonstationary acoustic events exhibit noncircular-
ity in the STFT domain. Thus, the detection problem for a
particular observed STFT frame Y1:F,t at time t is

H0 : Yf,t = Vf,t, ∀f,
H1 : Yf,t = Vf,t +Xf,t, ∀f,

(12)

where the Xf,t for f ∈ {1..F} are the STFT coefficients of
the acoustic event.

The generalized likelihood ratio test (GLRT) is defined as

G(y)
∆
=

[
max
θ1

pH1
(y|θ1)

]
/

[
max
θ0

pH0
(y|θ0)

]
, (13)

where θ0 and θ1 are the unknown parameters under hypotheses
H0 and H1, respectively. If we assume that Xf,t are circular
Gaussians, the log GLRT for the detection problem (12) given
observed STFT coefficients Yt := Y1:F,t is

logGC(Yt) =
∑
f

(
R̂y(f, t)

Rv(f)
− log

R̂y(f, t)

Rv(f)

)
. (14)

When the Xf,t are noncircular, the log GLRT is simply
the circular log GLRT, logGC(Yt) given by (14), plus an
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Fig. 5. ROC curvess for parameter sweep over FFT length N and averaging window length M . Notice that detection performance is relatively invariant to
FFT length N for larger Ms, and that there is a tradeoff between probability of false alarm and probability of detection for larger Ms.

additional term:

logGNC(Yt) = logGC(Yt)−
1

2

∑
f

log

(
1−

∣∣∣k̂y(f, t)∣∣∣2).
(15)

This additional term can also be used by itself as a blind
detector, that is

logGblind
NC (Yt) = logGNC(Yt)− logGC(Yt). (16)

This detector is blind in the sense that it does not require
knowledge of the Hermitian noise variance Rv(f). In practice,
we estimate the noise variance Rv(f) from all observation
samples before the first acoustic event, which we know a priori
to only contain noise. The blind detector is useful in situations
where we do not know the when noise-only durations occur.

Using a FFT length of N = 1024 and averaging window
length of M = 64, receiver operating curves (ROCs) for
DCASE2016 event detection are shown in figure 3 for various
SNRs, and the overall ROC curves across all SNRs are shown
in figure 4. Note that the noncircular GLRT (solid thick green
line) achieves the best performance versus all other detectors
at all SNRs. The blind noncircular GLRT (dashed orange line)
performs the worst, but has the advantage that it does not
require knowledge of the Hermitian background noise variance
Rv(f). Note that if Rv(f) is not known or cannot be estimated,
detection using only circular Hermitian statistics is impossible.

VII. EFFECT OF ESTIMATOR PARAMETERS

In this section, we empirically explore the effect of the es-
timation parameters on DCASE2016 acoustic event detection.
These parameters are the FFT length N , and the averaging
window length M . Figure 5 shows ROC curves using the
circular GLRT (14) and noncircular GLRT (15) for various
settings of N and M . Notice that for larger M , the FFT length
N does not have much effect on detection performance. Also,
the noncircular detector does not start improving performance
versus the circular detector until M = 16, which suggests that
a certain minimum number of samples is required in order for
a noncircular model to provide benefit.

To quantify the performance improvement and determine
the best setting of estimator parameters, we use area under
the curve (AUC), which is the integral of the ROC curve. For
various FFT lengths N , figure 6 plots the AUCs for the ROCs
in figure 5 versus averaging window length M . From the AUC

plot, settings of M = 32 and M = 64 yield the best AUC,
while FFT length N does not have much effect for larger M .
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Fig. 6. Areas under the curve (AUCs) for parameter sweep ROCs in figure 5.
Notice that M = 32 and M = 64 appear to be the best settings of averaging
window length, while the AUC is not very dependent on FFT length N .

VIII. CONCLUSION

Real-valued nonstationary signals tend to exhibit second-
order noncircularity in the complex-valued STFT domain.
Given this property, we have shown that using noncircular
Gaussian distributions to model the STFT provides distinct
benefits for processing nonstationary signals. First, we de-
scribed maximum likelihood estimators of the second-order
statistics of noncircular Gaussian data. These estimators have
a simple finite sample approximation, which allowed us to
empirically test the statistical significance of noncircularity in
the STFT. Then, we demonstrated the benefits of noncircular
models for detection of nonstationary acoustic events and
explored the effect of estimation parameter choice on these
detection results.

Future work will explore multichannel extensions of the
noncircular model. We also intend to explore the benefits
of using noncircular non-Gaussian distributions of complex-
valued random data, which require higher order statistical
moments. Also, the application of nonstationary signals in
the presence of nonstationary noise is another interesting
extension.
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