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Abstract—This paper describes an improved detector for
nonstationary harmonic signals. The performance improvement
is accomplished by using a novel method for extending the coher-
ence time of such signals. This method applies a transformation
to a noisy signal that attempts to fit a simple model to the
signal’s slowly changing fundamental frequency over the analysis
duration. By matching the change in the signal’s fundamental
frequency, analysis is more coherent with the signal over longer
durations, which allows the use of longer windows and thus
improves detection performance.

I. INTRODUCTION

Nonstationary harmonic signals, which are composed of
narrowband components at integer multiples of a slowly
changing fundamental frequency f(t), abound in science and
engineering. Examples of nonstationary harmonic signals in-
clude voiced speech and signals encountered in passive sonar
applications, such as ship engine noise and marine mammal
vocalizations. Detection of nonstationary harmonic signals
is an important problem. For example, the strong energy
contained in voiced speech harmonics is a useful feature
for voice activity detection [1]. In passive sonar, detection
of nonstationary harmonics is essential in identification of
contacts. Spectrograms of two examples of nonstationary
harmonic signals are shown in figure 1.
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Fig. 1. Spectrograms in dB of two examples of nonstationary harmonic
signals. Left: female speech, right: hydrophone recording of offshore killer
whales, which consists of multiple nonstationary harmonic signals.

Conventional processing of nonstationary harmonic signals
is typically done on a frame-by-frame basis. Such processing
is based on the assumption that the signal’s frequency content
does not change significantly over the analysis frame duration.
The result of this assumption limits performance, because
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short frames reduce the amount of data available to statistical
estimators. Since efficient statistical estimators produce better
estimates when provided with longer data records (assuming
stationary signals), their performance should improve when
provided with more stationary data.

First, we examine a formulation of the optimal detectors for
nonstationary harmonic signals in terms of the classic detectors
originally described by Scharf [2] and a generalized likelihood
ratio test (GLRT). This formulation unifies several classic
detectors [3]–[5]. Then, we present our main contribution,
which is a novel method of extending the duration of analysis
frames, which provides improved performance of statistical
estimators for nonstationary harmonic signals. This method is
inspired by pioneering work on warped wavelets [6] and the
fan-chirp transform [7]–[10]. Recently, we used our method
to improve detection of modulated random processes [11]
and enhancement of noisy and reverberant speech [12]. In
this paper, we proceed in a similar fashion, and show how
our method can improve detection of nonstationary harmonic
signals. To validate our approach, we demonstrate substantial
performance improvements on synthetic signals.

II. BACKGROUND

This section describes the signal model of interest and the
theory and implementation of the conventional detector for
nonstationary harmonic signals.

A. Signal model

In this paper, we consider real-valued nonstationary har-
monic signals of the form

x(t) =

K∑
k=1

Ak cos

(
k2π

∫ t

0

f(τ)dτ + φk

)
(1)

= Re

{
K∑
k=1

ak exp j k2π

∫ t

0

f(τ)dτ

}
(2)

where a ∈ CK are complex-valued amplitudes that give the
amplitude and phase of each harmonic (i.e., ak = Ake

jφk ),
K is the number of harmonics, and f(t) is the instantaneous
fundamental frequency of x(t). If T is the duration of the
analysis window in seconds and fs is the sampling rate, then
the N = Tfs discrete-time samples of the noisy signal are
modeled as

y = x + v, (3)



with y,x,v ∈ RN , where v is additive white Gaussian noise
with variance σ2.

B. Conventional detector

The goal is to design an optimal detector for x. Most
existing approaches assume that that fundamental frequency
is constant over short analysis durations of length T ; that
is, f(t) = f0 for t0 ≤ t ≤ t0 + T . Such an assumption is
valid for short enough durations. For example, most speech
processing algorithms are limited to frame durations of 10 to
30 milliseconds, because the speech signal is assumed to be
stationary during this short period. Given these assumptions
and the model (2), the measurements (3) can be written as a
linear model [2], given by

y = G(ψ)θ + v, (4)

where G(ψ) = [G(ψ) G∗(ψ)] ∈ CN×2K is a linear
signal subspace, ψ are parameters defining the subspace,
and θ ∈ C2K are unknown linear signal parameters. Under
conventional assumptions, ψ = {ω0,K} and θ = [aHaT ]H ,
where a ∈ CK are the complex amplitudes in (2). The two
blocks in G(ψ) are built from

[G(ω0,K)]n,k = exp jkω0n (5)

where ω0 = 2πf0
fs

. We will use this notation for frequency of
discrete-time signals throughout.

Using the identity

A cos(x+ φ) = A cosφ cosx−A sinφ sinx, (6)

the linear model (4) can be written equivalently [1], [13] as

y = H(ψ)θ + v, (7)

where H(ψ) = [Hc(ψ) Hs(ψ)] ∈ RN×2K and

[Hc(ω0,K)]n,k = cos kω0n

[Hs(ω0,K)]n,k = sin kω0n.
(8)

The unknown signal parameters are now θ =
[
ac
T as

T
]T ∈

R2K . Thus, the formulation (7) expresses (4) in terms of the
real and imaginary parts of the complex amplitudes ac,k =
Ak cosφk = Re ak and as,k = −Ak sinφk = −Im ak, and
uses a real-valued subspace matrix H(ψ).

When subspace parameters ψ are known, and signal pa-
rameters θ and noise variance σ2 are unknown, the uniformly
most powerful (UMP) detector is the constant false-alarm rate
(CFAR) matched subspace detector [2, §4.12]. When subspace
parameters ψ are also unknown, the generalized likelihood
ratio test (GLRT) statistic is given by [1]

D(y) =
yTPH(ψ̂)y

yT
(
I−PH(ψ̂)

)
y
. (9)

The matrix PH(ψ̂) is a projection onto the most likely linear
signal subspace H(ψ̂), where ψ̂ are the maximum likelihood
estimates of the unknown subspace parameters ψ. The pro-
jection for a matrix H is given by PH = H

(
HHH

)−1
HH ,

and the projection onto the complement H⊥ of H is given by
P⊥H = I − PH. Thus, the detection statistic (9) is a ratio of
the energy of y that lies in the most likely signal subspace
H(ψ̂) to the energy of y that lies in the complement H⊥(ψ̂)
of the most likely signal subspace.

C. Implementation of conventional detector

A practical and efficient implementation of (9) makes use of
the fast Fourier transform (FFT). Note that this implementation
assumes that ω0 is an integer multiple of the FFT center
frequencies ω. The spectrum Y (ω) of y is estimated by
applying a window function h and computing the discrete
Fourier transform (DFT) using the FFT:

Y (ω) =

N−1∑
n=0

hnyn exp−jωn, (10)

for ω = 2π nFFTNFFT
, nFFT ∈ {0, ..., NFFT − 1}. When K is

known, then the maximum likelihood estimate of ω0 can be
shown (see Appendix) to be

ω̂0 = argmax
ω0

K∑
k=1

|Y (kω0)|2 . (11)

When K is not known, estimation becomes more compli-
cated, since K determines the model order of the system.
Popular methods for estimating K include the Akaike infor-
mation criterion (AIC), minimum description length (MDL),
and maximum a posteriori (MAP) probability [14]. All these
methods consist of minimizing a cost function plus a penalty
term that prevents overfitting. Whipps and Moses [15] found
that MDL yields consistent estimates for large sample records,
and provide an efficient algorithm to jointly estimate ω̂0 and
K̂ by minimizing [15, (32)]{
ω̂0, K̂

}
= argmin

ω0,K
N log

(
yTP⊥H(ω0,K)y

)
+K logN. (12)

Given ω̂0 and K̂, the detection statistic (9) can be approx-
imated as

D̂(y) =

∑
ωs∈Ωs

|Y (ωs)|2∑
ωv∈Ωv

|Y (ωv)|2
, (13)

where Ωs =
{
ω̂0, 2ω̂0, ..., K̂ω̂0

}
is a set of frequencies

corresponding to a “harmonic sieve” and Ωv = Ω \ Ωs.
Note that given ω̂0 and K̂, the maximum likelihood esti-

mates of the complex amplitudes ak are simply (see Appendix)

âk =
2

N
Y (kω̂0), for k = 1, ..., K̂. (14)

However, the maximum likelihood estimates âk are not re-
quired for computing the detection statistic (13).

III. PROPOSED METHOD

The nonstationary harmonic signal detection in the previous
section made the assumption that f(t) ≈ f0 over a short anal-
ysis interval T . However, this assumption limits the amount
of data available to the detection statistic (9). To increase the
amount of data available during an analysis frame, we add a
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Fig. 2. Left: conventional assumption that f(t) is approximately constant
over a short duration T . Right: new assumption of a linear fit to f(t) that
allows a longer analysis duration Tw ≥ T .

parameter α to the set of subspace parameters ψ that allows
a linear fit to f(t) over a longer analysis duration Tw ≥ T .
Thus, under this new model, the instantaneous fundamental
frequency is modeled as

f(t) ≈ (1 + ᾱt) f0, (15)

where ᾱ = β/f0 is a continuous normalized chirp rate and β
is the slope in units of Hertz per second of the linear fit. Figure
2 shows a comparison between the conventional assumption
of constant frequency f0 over the shorter duration T and this
new assumption of a linear fit to f(t) over a longer duration
Tw.

A. Proposed detector

The linear approximation to fundamental frequency (15)
yields the instantaneous phase φ(t) = φᾱ(t)f0, where

φᾱ(t) =

∫ t

0

(1 + ᾱτ)dτ =

(
t+

1

2
ᾱt2
)
. (16)

For discrete-time samples yn = y(tn) where tn = n/fs, this
phase can be written as

φα(n) = φᾱ(tn) =
1

fs

(
n+

1

2
αn2

)
, (17)

where α = ᾱ/fs is a discrete-time normalized chirp rate. The
phase of the kth harmonic in (2) is then

k2πf0
1

fs
(n+

1

2
αn2) = kω0

(
n+

1

2
αn2

)
. (18)

Thus, the detector using the linear fit (15) uses the detec-
tion statistic (9) with the signal subspace matrix H(ψ) =
[Hc(ψ) Hs(ψ)] ∈ RN×2K , where

[Hc(ω0, α,K)]n,k = cos kω0

(
n+

1

2
αn2

)
[Hs(ω0, α,K)]n,k = sin kω0

(
n+

1

2
αn2

)
.

(19)

B. Implementation of proposed detector

In (19), the subspace matrix H for the proposed detector is
formulated using basis functions with nonstationary, linearly-
varying frequency. An efficient and equivalent implementation
of the proposed detector consists of a time-warping (which
compensates for the nonlinear phase (16), (17) of the signal),

followed by a FFT. Then the detection statistic is computed
using a harmonic sieve, as in (13).

Maximum likelihood estimation of ω0 and α for a frame of
data can be shown (see Appendix) to be a joint maximization
over the gathered magnitude-squared spectrum:

{ω̂0, α̂} = argmax
ω0,α

K̂∑
k=1

|Y (kω0, α)|2 , (20)

where Y (ω, α) is given by

Y (ω, α) =

N−1∑
n=0

yne
−jω(1+ 1

2αn)n. (21)

Y (ω, α) is related to the discrete fan-chirp transform [7],
[8], given by

Y fc(ω, α) =

N−1∑
n=0

yn
√
|φ′α(n)|e−jωφα(n). (22)

Using a variable substitution τ = φα(n), (22) can be written
[7], [8] in an equivalent form

Y fc(ω, α) =

M−1∑
m=0

ỹα,me
−jωm, (23)

which is the DFT of the time-warped signal ỹα,m. The M -
length time-warped signal ỹα,m is given by [8, (66)], [9]

ỹα,m =

N−1∑
`=0

y`√
1 + αt`

h
(
φ−1
ᾱ (t̃m)− t`

)
, (24)

where h(t) is an interpolation filter, which can be an ideal
sinc function or—to reduce computation—shorter filters, such
as a cubic Hermite spline or a linear interpolation kernel.
Upsampling yn before time-warping is advantageous. The
times tn and t̃m are evenly spaced and centered about 0. That
is, tn = n/fs for n ∈ {−N/2, ..., N/2} and tm = m/fs for
m ∈ {−M/2, ...,M/2}, and the inverse mapping φ−1

ᾱ in (24)
is given by [8, (20)], [10, (5)]

φ−1
ᾱ (t) = − 1

ᾱ
+

√
1 + 2ᾱt

ᾱ
. (25)

Figure 3 illustrates the effect of time-warping on a short
clip of voiced speech.
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Fig. 3. Illustration of the effect of time-warping. When a short frame
of a nonstationary harmonic signal with approximately linear fundamental
frequency variation (left) is warped using the maximum likelihood chirp rate
α̂, the harmonic chirps are converted to harmonic tones with approximately
constant frequency (right).
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Fig. 4. Monte Carlo experiments with Ak , φk , ω0, α, and σ2 unknown. The conventional detector, which assumes constant fundamental frequency f(t) over
the analysis duration, is compared to the new warped detector, which assumes a linear model of f(t) over the analysis duration. Left: −6dB SNR, center:
−10dB SNR, right: −14dB SNR.

The figure shows that when time-warping is performed with a
matching chirp rate α, harmonics with approximately linearly-
varying f(t) are converted into harmonics with approximately
constant f(t).

Thus, the warped spectrum Y (ω, α) from (21) can be
efficiently computed as a time-warping (24) followed by a
FFT. Using this efficient implementation, a grid search can
be performed over a set of frequencies Ω0 and a set of chirp
rates A to determine the maximum likelihood estimates ω̂0

and α̂ using (20). Then, the detection statistic (9) can be
approximated as in (13):

D̂new(y) =

∑
ωs∈Ωs

|Y (ωs, α̂)|2∑
ωv∈Ωv

|Y (ωv, α̂)|2
. (26)

IV. RESULTS

Monte Carlo experiments using synthetic data demonstrate
the improved performance of the new warped detector (26)
as compared to the conventional detector (13). The synthetic
signal x(t) to be detected is given by (1). It is sampled at
fs = 16 kHz and has K = 4 harmonics, uniform random
amplitudes Ak between 0 and 1, uniform random phases φk
between 0 and 2π, a center frequency of f0 = 300 Hz, and a
normalized chirp rate of ᾱ = ∆f

Tf0
= β

f0
= 3.125. That is, the

signal’s instantaneous fundamental frequency changes linearly
at a rate of 3.125f0 Hz per second, which corresponds to a
total change of 30 Hz over a 32 ms duration.

In terms of implementation parameters, for both detectors
the maximum likelihood estimate ω0 was found by searching
over a grid of 281 frequencies ranging from f0,min = 80 Hz to
f0,max = 360 Hz. For the new warped detector, the maximum
likelihood chirp rate α̂ was found by searching over 101 chirp
rates between ᾱmin = −31.25 and ᾱmax = 31.25. The length
M of the warped signal is equal to the original number of
samples N . The measurements yn are upsamped by 8 before
warping, and linear interpolation is used to implement (24).

For the experiments, the samples xn are embedded in
additive white Gaussian noise at −6dB, −10dB, and −14dB

SNR, where SNR is defined as

SNR
∆
=

∑K
k=1A

2
k

2σ2
(27)

and the analysis window duration T is varied. For each SNR
and T , average results were computed using 1000 Monte Carlo
trials.

For these 3 different SNRs, the panels of figure 4 show
probability of detection PD versus analysis window duration
T , given a false alarm probability PFA = 0.05. Notice that
for all SNRs, our new warped detector performs worse than
the conventional detector for short (T ≤ 48 ms) analysis
frames, while the new warped detector improves performance
for longer analysis durations. In very low SNRs (right panel),
our new detector can achieve substantial performance improve-
ment over the conventional detector, given a long enough
analysis duration. Note, though, that for real-world signals, the
warped detector will only improve performance so long as the
fundamental frequency of the signal changes approximately
linearly over the analysis duration.

V. CONCLUSION

In this paper, we have described a novel method of improv-
ing detection of nonstationary harmonic signals. Our method
works by fitting a simple model to fundamental frequency
variation over the analysis frame. By estimating the maximum
likelihood parameters of this simple model, we are able to
perform a time-warping of the data, which is an efficient
procedure that renders fundamental frequency approximately
constant and thus extends the coherence time of the detector,
which improves detection performance.

Many extensions to this work are possible. Future work will
examine extending beyond linear fits of fundamental frequency
to either higher-order polynomials or other nonlinear models.
Also, here we have only considered frame-by-frame detection.
Enforcing temporal constraints between frames for the model
parameters promises additional performance improvements.
Finally, allowing the amplitudes of the harmonics to be time-
varying in the model could further improve performance.



APPENDIX

In this appendix, we show that maximizing the gathered
magnitude-squared spectrum in (11) and (20) yields the max-
imum likelihood estimates of the fundamental frequency ω0

and the chirp rate α. The derivation is similar to Scharf’s
proof [2, §6.12] for a single tone with constant frequency in
additive white noise.

The signal model is given by (3), which represents discrete
samples of the continuous signal (1), where f(t) is given by
(15). The unknown parameters are θ = {Ak, φk, ω0, α, σ

2}.
Since vn is zero-mean, independent, and identically distributed
white Gaussian noise, the distribution of the measurements y
is

fθ(y) = (2πσ2)−N/2 exp

(
1

−2σ2

N−1∑
n=0

(yn − xn)2

)
(28)

which corresponds to a log likelihood of

L(θ,y) = −N
2

log(2πσ2)− 1

2σ2

N−1∑
n=0

(yn − xn)2. (29)

Now set the derivative of (29) with respect to σ2 to zero:

δL(θ,y)

δσ2
= − N

2σ2
+

1

2σ4

N−1∑
n=0

(yn − xn)2 = 0

⇒ σ̂2 =
1

N

N−1∑
n=0

(yn − xn)2, (30)

which shows that the maximum likelihood estimate of variance
is the averaged squared residuals between the measurements
y and the signal model x. If (30) is plugged in to (29), it
is easy to see that maximizing likelihood requires minimizing
the sample variance.

Thus, we desire to minimize σ̂2 with respect to Ak, φk,
ω0, and α. Expanding out (30) and using the approximation∑N−1
n=0 x

2
n ≈ N

2

∑K
k=1A

2
k yields

σ̂2 ≈ 1

N

N−1∑
n=0

y2
n +

1

2

K∑
k=1

A2
k

− 2

N
Re

{
N−1∑
n=0

yn

K∑
k=1

Ake
j(kω0(n+ 1

2αn
2)+φk)

}
.

(31)

The derivative of (31) with respect to φk and set to 0 is

δσ̂2

δφk
= − 2

N
Re

{
je−jφk

N−1∑
n=0

yte
−jkω0(1+ 1

2αn
2)

}
= 0. (32)

Notice the appearance of Y (kω0, α) from (21) in (32). Thus,
to satisfy (32), the maximum likelihood estimate is φ̂k =
∠Y (kω0, α). Plugging this estimate into (31) and ignoring the
data-dependent term 1

N

∑N−1
n=0 y

2
n yields the expression

γ̂2 = − 2

N

K∑
k=1

Ak|Y (kω0, α)|+ 1

2

K∑
k=1

A2
k. (33)

Taking the derivative of (33) with respect to Ak and setting it
to 0 yields the maximum likelihood estimate of the amplitudes
Âk = 2

N |Y (kω0, α)|. Plugging Âk into (33) yields

γ̂2 = − 2

N2

K∑
k=1

|Y (kω0, α)|2. (34)

Since minimizing γ̂2 maximizes the likelihood, the maximum
likelihood estimates of the remaining unknown parameters ω0

and α are given by the joint maximization

{ω̂0, α̂} = argmax
ω0,α

K∑
k=1

|Y (kω0, α)|2 (35)

Note that (11) is equivalent to (35) when α = 0, and that
(20) is equivalent to (35). Thus, (11) and (20) are maximum
likelihood estimators for ω0 and {ω0, α}, respectively.
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[14] P. Djurić, “A model selection rule for sinusoids in white gaussian noise,”
IEEE Transactions on Signal Processing, vol. 44, no. 7, pp. 1744–1751,
July 1996.

[15] G. T. Whipps and R. L. Moses, “A combined order selection and
parameter estimation algorithm for coupled harmonics,” in Military
Sensing Symposium (MSS) Specialty Group on Battlefield Acoustic and
Seismic Sensing, Magnetic and Electric Field Sensors, Laurel, MD, Oct.
2003.


