AudioScopeV2: Audio-Visual Attention Architectures for Calibrated Open-Domain On-Screen Sound Separation

Efthymios Tzinis^{1,2*}, Scott Wisdom¹, Tal Remez¹, John R. Hershey¹

* Work done during an internship at Google.

Task

• Separate all sounds that originate from on-screen objects, regardless of their class:.

Prior Work

- Most prior audio-visual separation work requires supervised training data, and can only handle specific sound classes (e.g. speech, music).
- AudioScopeV1 [1] proposed a different approach that can learn to separate open-domain on-screen sounds in an unsupervised manner.
- (1) Audio-only separation into sources, trained on raw unsupervised audio with mixture invariant training (MixIT) [2].
- o (2) Audio-visual classifier that predicts the probability \hat{y}_m that each source \hat{s}_m is on-screen, trained using MixIT assignments.
- o (3) On-screen estimate by using probabilities as mixing weights:

$$\hat{y}_m = \sigma(\hat{\ell}_m) \in [0, 1], \ \hat{x}^{\text{on}} = \sum_{m=1}^M \hat{y}_m \hat{s}_m$$

Contributions

- Propose more sophisticated cross-modal and self-attention audio-visual architectures, compared to AudioScopeV1 [1].
- Create a new dataset using YFCC100M that is more challenging and unconstrained compared to original AudioScopeV1 [1] dataset.
- Propose a new calibration procedure to precisely tune on-screen reconstruction versus off-screen suppression, that simplifies comparisons across models with different operating points.

References

[1] E. Tzinis et al., Into the Wild with AudioScope: Unsupervised Audio-Visual Separation of On-Screen Sounds, ICLR 2021.

[2] S. Wisdom et al., Unsupervised Sound Separation Using Mixture Invariant Training, NeurIPS 2020.

[3] B. Thomee et al., YFCC100M: The New Data in Multimedia Research, Comm. of the ACM 2015.

AudioScopeV1 and V2 Model Training

- I. Mix a random soundtrack into an input video's soundtrack to make mixture of mixtures (MoM).
- 2. Separate the MoM and assign each source to one of the 2 input soundtracks; use SNR loss to train separation model (MixIT loss).
- 3. Use the assignments y as pseudo-labels to train classifier with multiple-instance active combinations (AC) loss:

combinations (AC) loss: $\mathcal{L}_{AC}(y,\hat{y}) = \min_{\ell \in \mathcal{O}_{\geq 1}(\mathbb{B}^M)} \sum_{m} \mathcal{L}_{CE}(\ell_m,\hat{y}_m), \mathcal{O}_{\geq 1}(\mathbb{B}^M)$ is all subsets of y with at least one positive. Proposed Audio-Visual Attention Architectures

- 1. Self-attention (SA) attends over audio sources (M), spatial locations (G), and time (T).
- 2. Cross-modal attention allows shape (G, T) video tensors to attend to shape (M, T) audio tensors, and vice versa.
- 3. Separable versions split attention over audio sources M/spatial locations G and time T.

(a) Self-Attention (SA). (b) Cross-modal attention (CMA).

(c) Separable.

New Unfiltered Dataset

- All data sourced from Creative Commons-licensed YFCC100M [3] videos.
- First AudioScope model [1] trained with YFCC100M data filtered by an unsupervised audio-visual coincidence model.
 - We found this filtering method introduces bias (see results to the right).
- We construct a new unfiltered version of YFCC100M with new human annotations (3 raters per clip) for on-screen and off-screen sounds.
- 1600 hours (4.85M 5s clips) training data
- Total / on-screen-only / off-screen-only:
 - o Train: 20000 / 480 / 4664
 - Validation: 6500 / 109 / 1421
 - o Test: 3500 / 43 / 762

Human labeling of unfiltered YFCC100M (test) On-screen only 1.2% Off-screen only 21.8% Remainder 77.0%

Proposed Calibration Procedure

- Signal-to-noise ratio (SNR)
 measures reconstruction of
 on-screen sounds.
- measures rejection of off-screen sounds. $\|x\|$

$$SNR(x^{on}, \hat{x}^{on}) = 20 \log_{10} \frac{\|x^{on}\|}{\|x^{on} - \hat{x}^{on}\|}$$

 $OSR(x, \hat{x}^{on}) = 20 \log_{10} \frac{\|x\|}{\|\hat{x}^{on}\|}$

Off-screen suppression ratio (OSR)

- Inherent tradeoff between SNR and OSR, and models achieve different random operating points after training.
- To compare fairly, measure SNR at a calibrated target OSR.
- Can calibrate to target OSR by tuning a scalar bias on logits:

Results

- Measure on-screen SNR calibrated to 6 dB OSR for all models.
- Source power-weighted AUC-ROC to measure classifier performance.
- Evaluate on the original AudioScopeV1 filtered dataset, and the new proposed unfiltered dataset.

Separation model			Trained on filtered	Filtered III				Unfiltered (new proposed)			
audio-only pre-training			1 FPS		16 FPS		1 FPS		16 FPS		
AV al	ignment	Complexity	PT Filt.	SNR	AUC	SNR	AUC	SNR	AUC	\mathbf{SNR}	AUC
No processing $(\hat{x}^{\text{on}} = x \text{ with 0dB OSR})$				4.4	_	4.4	_	2.5	·—	2.5	_
No processing $(\hat{x}^{\text{on}} = x/2 \text{ with 6dB OSR})$			3 OSR)	4.7	_	4.7	_	4.1	_	4.1	_
AudioScope [45] AudioScope*		$\mathcal{O}(TMG)$	✓	6.0	0.79	_	_	2.7	0.69	_	_
		$\mathcal{O}(TMG)$	\checkmark	8.2	0.80	5.9	0.77	5.8	0.78	5.2	0.71
SA	Joint	$\mathcal{O}(T^2[M+G]^2)$		10.0	0.84	9.9	0.86	7.2	0.82	7.7	0.83
	Sep.	$\mathcal{O}(T^2 + [M + G$	$[r]^2)$ \checkmark	9.6	0.84	8.2	0.83	6.6	0.78	6.6	0.80
CMA	Joint	$\mathcal{O}(T^2MG)$	\checkmark	10.0	0.88	10.0	0.85	7.3	0.83	7.7	0.84
	Sep.	$\mathcal{O}(T^2 + MG)$	✓	9.5	0.83	9.3	0.82	6.4	0.78	7.1	0.80

- Computational efficiency of audio-visual attention architectures.
- Separable versions are much more efficient for longer inputs.

Online demos of AudioScopeV2 separation and dataset recipe:
 google-research.github.io/sound-separation/papers/audioscope-v2